The first thing to notice when finding the derivative of this function is that it is a composition of two functions, as shown below:
| z | = | sin( |
| where | |
= | tan(t) - t-p |
The Chain Rule (Derivative Rule for Compositions):
If
|
Or, if
|
|||||||||||||||||||||||||||||||||
So our example,
| z | = | sin( |
| where | |
= | tan(t) - t-p |
| z | = | f( |
, where | |
= | g(t) | = | tan(t) - t-p |
| z ' | = ( | f( |
)' | |
| = | f '( |
( |
||
| = | ( sin( |
( tan(t) - t-p )' | ||
| ( sin( |
= | cos( |
(by the derivative rules for basic functions) |
| ( tan(t) - t-p )' | = | ( 1 / (cos(t))2 - (-p)*t-p-1 ) | (by the derivative rule for sums, derivative rules for basic functions, and the power rule) |
| z ' | = | cos( |
( 1 / (cos(t))2 - (-p)*t-p-1 ) |
| = | cos(tan(t) - t-p) | ( 1 / (cos(t))2 - (-p)*t-p-1 ) | |
| = | cos(tan(t) - t-p) (1 / (cos(t))2 - (-p)*t-p-1) | ||