Derivatives of Constant Multiples
Example:
W = G*eK*y + E
The first thing to notice when finding the derivative of this function
is that it is
the product of a constant and another function,
as shown in color below:
The Derivative Rule for Constant Multiples:
The derivative of a constant multiple is the constant times thederivative of the function.
If
then the derivative of
z is
| |
z' |
= |
( c |
f(x) )' |
| |
|
= |
c |
f '(x) |
So our example,
we can think of as
So the derivative is
| W ' |
= ( |
c |
f(y) |
)' |
| |
= |
c |
f '(y) |
|
| |
= |
G |
(eK*y + E)' |
|
and we just need to know the derivative on the right-hand
side of the equation. In this case this is
so the finished derivative is
| W ' |
= |
G |
( eK*y + E (K + 0) ) |
| |
= |
(GK)*eK*y + E |
additional explanation for the derivative of constant multiples
see another derivative of constant multiples example
practice gateway test
previous page
Page Generated: Sun Jan 11 03:07:24 2026
Comments to Gavin LaRose
glarose@umich.edu
©2001 Gavin LaRose,
University of Michigan Math Dept.