As usual, to take the derivative of a product we need to
power | : | x r | |
polynomial | : | c n x n + c n-1 x n-1 + ... + c 0 | |
exponential | : | a x | |
natural log | : | ln(x) | |
sine | : | sin(x) | |
cosine | : | cos(x) | |
tangent | : | tan(x) |
sin(x) | cos(x) | , | x | ex | , | x | (x2 + 1) | tan(x) | , and | 5 | ln(x) | . |
Let's write out the functions in these products explicitly in a table. Notice that (1) we're labeling the functions in the products f(x) and g(x) to make them look like the product rule (as given below), and (2) the third of them is a product of 3 functions, so we have an h(x) as well.
f(x) g(x) | ![]() |
f(x) | ![]() |
g(x) | ||||||||
![]() |
||||||||||||
sin(x) cos(x) | ![]() |
sin(x) | ![]() |
cos(x) | ||||||||
x ex | ![]() |
x | ![]() |
ex | ||||||||
5 ln(x) | ![]() |
5 | ![]() |
ln(x) | ||||||||
![]() |
||||||||||||
f(x) g(x) h(x) | ![]() |
f(x) | ![]() |
g(x) | ![]() |
h(x) | ||||||
![]() |
||||||||||||
x (x2 + 1) tan(x) | ![]() |
x | ![]() |
x2 + 1 | ![]() |
tan(x) |
Applying the rule: Once we've seen that we're working with a product, we apply the product rule:
z | = | (f(x) g(x)) |
z ' | = | (f(x) g(x))' | |||
= | f '(x) g(x) | + | f(x) g '(x) |
So to work out the derivative of a product, we need to
f(x) g(x) | ![]() |
f(x) | ![]() |
g(x) | ![]() |
![]() |
f '(x) | ![]() |
g '(x) | ![]() |
|||||||||||||||
![]() |
|||||||||||||||||||||||||
sin(x) cos(x) | ![]() |
sin(x) | ![]() |
cos(x) | ![]() |
![]() |
cos(x) | ![]() |
-sin(x) | ![]() |
|||||||||||||||
x ex | ![]() |
x | ![]() |
ex | ![]() |
![]() |
1 | ![]() |
ex | ![]() |
|||||||||||||||
5 ln(x) | ![]() |
5 | ![]() |
ln(x) | ![]() |
![]() |
0 | ![]() |
1/x | ![]() |
|||||||||||||||
![]() |
|||||||||||||||||||||||||
f(x) g(x) h(x) | ![]() |
f(x) | ![]() |
g(x) | ![]() |
h(x) | ![]() |
f '(x) | ![]() |
g '(x) | ![]() |
h '(x) | |||||||||||||
![]() |
|||||||||||||||||||||||||
x (x2 + 1) tan(x) | ![]() |
x | ![]() |
x2 + 1 | ![]() |
tan(x) | ![]() |
1 | ![]() |
2x | ![]() |
1/cos2(x) |
( | f(x) | g(x) | ) ' | = | f '(x) | g(x) | + | f(x) | g '(x) |
![]() |
|||||||||
( | sin(x) | cos(x) | ) ' | = | cos(x) | cos(x) | + | sin(x) | (-sin(x)) |
( | x | ex | ) ' | = | 1 | ex | + | x | ex |
( | 5 | ln(x) | ) ' | = | 0 | ln(x) | + | 5 | (1/ x) |
( | f(x) | g(x) | h(x) | ) ' | = | f '(x) | g(x) | h(x) | + | f(x) | g '(x) | h(x) | + | f(x) | g(x) | h '(x) |
![]() |
||||||||||||||||
( | x | (x2+1) | tan(x) | ) ' | = | 1 | (x2+1) | tan(x) | + | x | 2 x | tan(x) | + | x | (x2+1) | (1/ cos2(x) |
Summary: Let's summarize the steps we take to find derivatives of products.