Derivatives of Quotients
Example:
y = ((-2)*s2 + 3) / es + 1
The first thing to notice when finding the derivative of this function
is that it is a quotient, as shown below:
| y |
= |
(-2)*s2 + 3 |
 |
| es + 1 |
The Derivative Rule for Quotients:
The derivative of a quotient is the derivative of the numerator
times the denominator minus the numerator times the derivative of the
denominator, all divided by the denominator squared.
If
| |
z |
= ( |
f(x) |
) |
 |
| g(x) |
then the derivative of
z is
| |
z ' |
= ( |
f(x) |
)' |
 |
| g(x) |
| |
|
= |
f '(x) g(x) |
- |
f(x) g '(x) |
|
 |
|
( g(x) )2 |
So our example,
| y |
= |
(-2)*s2 + 3 |
 |
| es + 1 |
we can think of as
| y |
= |
f(s) |
 |
| g(s) |
So the derivative is
| y' |
= ( |
f(s) |
)' |
 |
| g(s) |
| |
= |
f '(s) |
g(s) |
- |
f(s) |
g '(s) |
 |
| ( g(s) )2 |
| |
= |
( (-2)*s2 + 3 )' |
( es + 1 ) |
- |
( (-2)*s2 + 3 ) |
( es + 1 )' |
 |
| ( es + 1 )2 |
and we just need to know each of the derivatives on the right-hand
side of the equation. In this case these are
so the finished derivative is
| y' |
= |
( (-2)*2*s + 0 ) |
( es + 1 ) |
- |
( (-2)*s2 + 3 ) |
( es + 1 (1 + 0) ) |
 |
| ( es + 1 )2 |
| |
= |
(-4)*s es + 1 - ((-2)*s2 + 3) es + 1 |
 |
| (es + 1)2 |
additional explanation for the quotient rule
see another quotient rule example
practice gateway test
previous page
Page Generated: Thu Feb 12 01:20:59 2026
Comments to Gavin LaRose
glarose@umich.edu
©2001 Gavin LaRose,
University of Michigan Math Dept.