Derivatives of Quotients
Example:
q = (p2 - 1) / (p - 1)10
The first thing to notice when finding the derivative of this function
is that it is a quotient, as shown below:
| q |
= |
p2 - 1 |
 |
| (p - 1)10 |
The Derivative Rule for Quotients:
The derivative of a quotient is the derivative of the numerator
times the denominator minus the numerator times the derivative of the
denominator, all divided by the denominator squared.
If
| |
z |
= ( |
f(x) |
) |
 |
| g(x) |
then the derivative of
z is
| |
z ' |
= ( |
f(x) |
)' |
 |
| g(x) |
| |
|
= |
f '(x) g(x) |
- |
f(x) g '(x) |
|
 |
|
( g(x) )2 |
So our example,
| q |
= |
p2 - 1 |
 |
| (p - 1)10 |
we can think of as
| q |
= |
f(p) |
 |
| g(p) |
So the derivative is
| q' |
= ( |
f(p) |
)' |
 |
| g(p) |
| |
= |
f '(p) |
g(p) |
- |
f(p) |
g '(p) |
 |
| ( g(p) )2 |
| |
= |
( p2 - 1 )' |
( (p - 1)10 ) |
- |
( p2 - 1 ) |
( (p - 1)10 )' |
 |
| ( (p - 1)10 )2 |
and we just need to know each of the derivatives on the right-hand
side of the equation. In this case these are
so the finished derivative is
| q' |
= |
( 2*p - 0 ) |
( (p - 1)10 ) |
- |
( p2 - 1 ) |
( 10*(p - 1)9 (1 - 0) ) |
 |
| ( (p - 1)10 )2 |
| |
= |
2*p (p - 1)10 - 10*(p2 - 1) (p - 1)9 |
 |
| ((p - 1)10)2 |
additional explanation for the quotient rule
see another quotient rule example
practice gateway test
previous page
Page Generated: Sat Feb 14 14:04:46 2026
Comments to Gavin LaRose
glarose@umich.edu
©2001 Gavin LaRose,
University of Michigan Math Dept.