An example of basic mathematics typesetting in $\mathrm{L}_{\mathrm{A}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$:

$$
\begin{align*}
& \text { To solve } \\
& \qquad \frac{d y}{d x}+\frac{3}{x} y=x^{4}, \quad y_{0}=\sqrt{2} \tag{1}
\end{align*}
$$

we use the integrating factor $\rho(x)=e^{\int p(x) d x}$ (where $p(x)$ is the coefficient of y in (1)). This is

$$
\begin{align*}
\rho(x) & =e^{\int(3 / x) d x}=e^{3 \ln |x|} \\
& \left.=x^{3} \text { (because } 3 \ln |x|=x^{3}\right) . \tag{2}
\end{align*}
$$

\ldots Finally, we might ask: what is $\lim _{x \rightarrow \infty} \sqrt[n]{y(x)}, n \in I, n \neq 2$?

```
\documentclass{article}
\usepackage{amsmath} % we need this for the align macro
\begin{document}
To solve
\begin{equation}\label{E:linde}
\frac{dy}{dx}+\frac{3}{x}y = x^4, \quad y_0=\sqrt {2},
\end{equation}
we use the \emph{integrating factor} $\rho(x) = e^{\int
p(x)\,dx}$ (where $p(x)$ is the coefficient of $y$
in~(\ref{E:linde})). This is
\begin{align}
\rho &= e^{\int (3/x)\,dx} = e^{3\ln|x|}\notag\\
    &= x^{3}\ (\mbox{because}\ 3\ln}|x|=x^{3})
\end{align}
\ldots Finally, we might ask: what is
$\lim_{x\to\infty}\sqrt[n]{y(x)}$, $n\in I$, $n\ne 2$?
\end{document}
```

Some things to note about this:

- Inline math equations are delimited with \$...\$.
- Displayed math equations are delimited in a number of ways: to get a numbered equation, use \begin\{equation\}... \end\{equation\}. To get } a simple, unnumbered equation, replace equation with equation* in the begin and end macros ${ }^{1}$. To get multi-line equations, we use something like align (see below).

[^0]}

- By using the \label macro, we can "label" an equation displayed with \equation and refer to it later with the \ref command. Note that in our example we didn't label equation $(2)^{2}$, but still let it get numbered.
- All spaces are ignored in equations. To specify spacing other than that which $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ puts in, we have to specify it. Spacing commands are $\backslash,\left(\begin{array}{l}\text {) , }\end{array}\right.$
 trust $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ to get things right.
- To include text in math, use $\backslash \operatorname{mbox}\{\ldots\}$ to avoid it being typset in mathitalic (with no spaces).
- Greek symbols are available in math as you'd expect, through the macros \alpha, \beta,.... (And in capitals, too(!): \Gamma,...)
- Include standard operators and functions in math with the corresponding LATEX commands: \in, \ln, \ne, \sin, \to, etc.
- Finally, notice the align equation environment ${ }^{3}$. This allows alignment of several equations - the marker that indicates where the alignment takes place is the ampersand.
- Each of the equations in the align environment (except the last) is ended with a line break ($\backslash \backslash$).
- By default each of the equations is individually numbered, but we can suppress numbering on one or more of the equations with the \notag command. (Inserted before the \\.)
- We can also label any numbered equation with a \label command, the same way we labelled the first equation-for example, by appending \label\{E:intfac\} at the end of the equation (before the $\backslash \backslash$ if we're not labelling the last equation).

[^1]
[^0]: 1Theequation*andalignequationenvironmentsrequirethatyouloadtheamsmathpackagewiththe\usepackage\{amsmath\}commandincludedinthedocumentheader.Ifyou'renotusingthispackage,youcanalsogetanunnumbereddisplayedequationbyusing$\backslash[$and$\backslash]$insteadofthe\begin\{equation*\}and\end\{equation*\}commands.undefined

[^1]: 2. . . sort of.
 ${ }^{3}$ Which requires the amsmath package-see footnote 1 .
